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Introduction

• As a security professional you probably have seen AI gradually 

penetrating your field as a new tool. We label this “AI for security”.

• On the other hand, you may also have been involved in security 

evaluation of solutions that utilize AI. We call this “Security for AI”.

• It may surprise some that AI and security overlap in many areas, but 

this is because AI is an enabler technology. Would anyone find it odd 

that “security” and “programming” overlap??



Important terminologies

• Artificial intelligence (AI) considers intelligence of a man-made machine and includes 

among others the field of machine learning (ML).

• Machine learning attempts to train (configure) a mathematical model to represent an 

underlying phenomena given (large amounts) of representative data.

• Data is usually an array of feature vectors that capture some aspects of this phenomena.

• Inference refers to using the learned model at runtime with live data.

• The exact structure of the model and the data as well as the training and the inference 

process may differ across applications. In this presentation we will mostly try to ignore such 

details.



Important terminologies (cont.)

• True/False Positive and Negative rates refer to 

ratio of predicted vs actual items in each class.

• For example, in an Intrusion Detection System 

False Positive means false alarms and False 

negatives means detections evaded.

• Accuracy = (TP + TN) / ( P + N)

Image credit: wikipedia



Importance of data



If all your friends jumped 

off a bridge then would 

you too?

We will get back to this important question in a minute!
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“Gender Shades: Intersectional 

Accuracy Disparities in

Commercial Gender 

Classification”,

Joy Buolamwini, Timnit Gebru, 

2018.



Understanding bias

• It might be easy to visualize and understand the problem in case 

of gender and racial bias. But would you be able to spot other 

types of bias in your data or detect similar problems?

• Now, would you trust a critical ML system that scores 100.0% 

accuracy on training data - without having a full understanding of 

the training data content and coverage?



Data Readiness

• Based on work by Neil Lawrence, “data readiness” considers the 

following readiness levels (somewhat simplified here):

– Level C: data exists (from C4, “I heard someone has some 

data” to C1, “here is some files I found”)

– Level B: data exists and is a faithful representation (B1)

– Level A: correct data exists and is appropriate for this task (A1)

• In my experience, we are usually around C1. 



If all your friends jumped 

off a bridge then would 

you too?

Answer: an ML model would undoubtedly do!



Security for AI



Attacks against AI system

• Generally the following classes of attacks against AI systems are 

considered:

– Poisoning: manipulate (training) data to affect future behaviour

– Evasion: avoid positive classification (e.g. bypass spam detection) 

– Impersonation: dictate desired classification

– Inversion: extract model or training data, or check for membership

• This is all in addition to the standard security issues (availability, 

integrity, ...). 



Instability in AI models

• Many security vulnerabilities are caused by a

systems unexpected reaction to a maliciously 

crafted input (e.g. buffer overflows).

• AI models can be even more sensitive to 

malicious input. And often we can’t explain 

why...

(“One pixel attack for fooling deep neural 

networks”, J. Su et al., 2017)



Instability in AI models (cont.)

• According to Wolpert-Macready No Free Lunch Theorem (NFLT) if we 

consider all possible data generating distributions then all classification 

algorithms have the same error rate for previously unobserved data.

• At the same time according to the manifold hypothesis, the 

“interesting” information in a high-dimensional space is normally 

concentrated to a few low-dimensional manifolds.

• Could we then (1) train the model to better handle small variations in 

the input and (2) manually reject extreme outlier data points?



Adversarial Machine Learning

• Research by Szegedy et al., suggests that models that perform near human 

accuracy on training data can have ~100% error rate on select malicious data.

• Adversarial ML uses ML to craft input data to attack another ML system.

• It turns out that ML models can be hardened against adversarial attacks, which 

normally results in more robust models that better handle input noise and 

unexpected input.

• Is this the ML equivalent of hiring ethical hackers to harden your system?



Generative Adversarial Network (GAN)

• Essentially two ML models trained in parallel to 

craft respectively detect machine generated 

data.

• This can lead to more stable models but also to 

models that can generate realistic input (which 

is normally the main reason for use of GAN).

• GAN is a powerful tool, which can sometimes 

be abused.



Generative Adversarial Network (GAN)

thispersondoesnotexist.com

&

whichfaceisreal.com



Secure ML - design principles

• The standard security practices also applies to ML systems. For example, 

it is relatively easy to apply Saltzer and Schroeder's design principles for 

protection of information in computer system to this field.

• The principles are: economy of mechanism, fail-safe defaults, complete 

mediation, open design, separation of privilege, least privilege, least 

common mechanism, psychological acceptability, work factor, 

compromise recording.



Secure ML - design principles (cont.)

• Open design: This is the usual security through obscurity problem. And 

while you might consider your model a business secret, remember that 

black-box ML models can be extracted by attackers (model inversion).

• Separation of privileges: Access to data is also a privilege! See for 

example federated learning or early data anonymisation.

• Psychological acceptability: Developers must make it easier to 

understand why the models thinks a certain way. 



Intrinsic and post hoc explainability

A. Use interpretable models, e.g. sparse linear models, decision trees, 

decision rules.

B. Generate example data to explain predictions.

C. Quantify contribution of each data feature to the prediction.

Interpretable ML 

model  
data prediction

Provided by RISE researcher Rami Mochaourab from the project “Explainable and Ethical 

Machine Learning for Knowledge Discovery from Medical Data Sources”

Machine Learning 

model  data prediction

Model-agnostic explainability 

method  



Privacy issues in ML

• Important subjects in this area include data gathering and data 

anonymization as well as the standard security issues such as 

secure data processing.

• As these are standard security issues, we will instead focus on the

specific ML issues inversion and membership attacks. 

• In particular, we will have a (very) brief look at Federated Learning 

(FL) and Differential Privacy (DP).



Privacy issues in ML(cont.)

• Federated learning is a distributed system where users send not 

data but adjustments to their model as they learn locally.

• FL systems can still leak user data (some recent attacks use GAN).

• Differential privacy attempts to improve privacy by better hiding 

individual's contribution. For example, ε-differential privacy

defines how much noise must be added to data to achieve this.



AI for security



Where can ML improve security?

• ML requires data to function. In most cases, this data must also 

be correctly labelled.

• Furthermore, the data should contain features that are important 

for the outcome (we may not know which beforehand) and a 

reasonable signal-to-noise ratio.

• And in the case of deep learning, we may need very large 

amounts of data.



Example 1: network monitoring (IDS)

1. Record a few weeks of network traffic

2. Label the malicious packets or streams as such

3. Train a deep-learning model to distinguish between normal and 

malicious traffic

Possible issues: (1) How do we label data correctly? (2) Can this detect 

future attacks? (3) Would the model work if deployed to other networks? 

(4) Will legitimate but unusual traffic cause false alarms?



Example 2: malware detection

1. Gather a large number of normal executables

2. Gather all known malware

3. Train a deep-learning model to distinguish between the two

Possible issues: (1) Can this detect future malware? (2) How 

common are false positives? (3) Given the model, could malware 

creators construct new malware that evade detection?



Example 3: CC fraud detection

1. Gather a large number of CC transactions

2. Label fraudulent transactions as such

3. Train a deep-learning model to distinguish between the two

Possible issues: (1) How do we label data correctly? (2) What about 

security/privacy issues? (3) What are the real-world implications of 

a false negative?



Example 4: find bugs and vulnerabilities

1. Use commit data from a number of repositories

2. When a security issue is fixed, label affected code as a bug

3. Train a deep-learning model to distinguish between the two

Possible issues: (1) How do we represent code as a feature vector? (2) 

What if the security fix also changed unrelated parts? (3) Would this 

generate a lot of false positives/negatives? (4) How hard is it to interpret 

the results?



Example: IDS and image recognition

Image credits: wireshark.org, “Gradient-Based Learning Applied to Document Recognition”, Y. lecunn et al., 1998.

👍👎



Would this be accurate?

• Assume we have an accuracy of 99.9%. Is this a good result?

– Assume we recorded 100000 packets, 10 of which is malicious,

– Recall that accuracy = (TP + TN) / ( P + N),

– Given this imbalance of data, an algorithm that always 

guesses “no attack” will have around 99.99% accuracy.

• As an exercise, you could calculate how many microseconds it 

takes before the first false alarm is raised on a 100Gbps link.



Can it be broken (without using math)?

• Convolutional neural networks have a number of 

properties that helps them ignore certain variations in 

images.

• These properties are not always desired in security.

• In practice, an attack could be as easy as reusing parts of a 

legitimate packet, shifting some fields left/right or 

toggling one bit in a malicious packet to evade detection.

🐈

😈



More on breaking ML models for security

• Different ML constructs have a different inherent weaknesses.

– Some are limited by how much they can remember from a sequence of events

– Some are limited by what part of data they focus on

– Some have trouble distinguishing between permutations of data

– Sometimes different parts of data can cancel out each other, which can be 

used to hide the malicious parts.

– ...

• Any reasonably skilled hacker with minimal knowledge in machine learning could 

probably find ways to exploit many current ML solutions.



Final words

• Machine Learning is becoming more common in security.

• As security professionals, we need to have some basic understanding of how 

ML works.

• In particular, we need to understand when ML does not work, when it can be 

broken and what differs a good ML solutions from a really bad one.

• And at the very least, we need to agree on a common terminologies to better 

understand each other.



Further reading

• “Datasheets for Datasets” Timnit Gebru et al., 2020.

• “Data Readiness Levels”, Neil D. Lawrence, 2017.

• “A Marauder’s Map of Security and Privacy in Machine Learning”, Nicolas Papernot, 2018.

• “The security of machine learning”, Marco Barreno et al., 2010.

• "Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges“, C. Rudin

et al., 2013.

• “Intriguing properties of neural networks”, C. Szegedy et al., 2014.
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