TrustFull: Trustworthy Fullstack Computing

Mads Dam

Benoit Baudry, Roberto Guanciale, Martin Monperrus, Musard Balliu, Douglas Wikstrom,
Karl Palmskog
Postdocs, PhD students, MSc students
KTH/EECS/TCS

SSF-Vinnova samverkanskonferens for cybersakerhet 2021, Dec. 2021

Secure Fullstack Computing — The Challenges

#1: Size, complexity, legacy

e All three are fundamental enemies of
security

* Separation of concerns
* Scalability where needed

* Precision where needed

#2: Lack of good models

* Current HW models are fundamentally
flawed

* Do not capture the right properties
* Do not reflect the behaviour of real HW

* Example: Spectre

#3: Proprietary HW and SW

* Incomplete and inconsistent documentation

* Work with open source SW and HW as far
as possible

* Example:RISC-V

* Or else models must be learned

#4: Lack of effective tools and
methods

* Precision: To support critical security
properties at OS/HW level

* Scalability: For automatic analysis, processing,
and repair of large SW ensembles

The Project

WP |: Analysis and modelling
* Modelling and formal verification of low-level SW and HW
WP2: Application protection mechanisms
* Randomization and debloating, application security
WP3: Fault containment and recovery mechanisms
* Automatic repair, kernel and device security
WP4: Demonstrator
» E-voting, based on Open Verificatum
WP5: Exploitation and dissemination

* Publications, open-source releases, outreach, education

Thank you!

Extra Slides

WPI - Some Highlights

SCAM-V:Testing models against
HW

e i .
Entry Program Binary | transpiler + BIR | weakest Rel.
Generator ”| Observations ”1 synthesis
Main
Loop Relation
Y

————————— Final ———————————— Test —
Read ~_ State Teston | !NPuts Test-case
Side Channel | Hardware | Generation

Per-program Test Loop

* Formal models must reflect the behavior
of the actual hardware

* Many problems under the hood - Spectre

 SCAM-V: New testing approach to
validate models against real hardware

Modelling Side channels:

Novel microinstruction-level modelling
framework MIL

Captures all known Spectre variants and then
some

New vulnerabilities identified

Verified countermeasures

Decoded . SPei“{‘ftEd r Retired c Committed
XE i ET A MT R @
RBK /
PrD FrcC Frc

- /PEXE RBKYN,Z S RET
S U N U v

= Z

Predicted Speculatively fetched Fetched

WP2 — Some Highlights

Automatic randomization: Automatic code debloat

* Automatic synthesis of VWWebassembly * Remove unnecessary software
program variants dependencies

* Randomize crypto libraries on the * Static and dynamic code analysis on
world-wide edge platform of Fastly Java bytecode

DeEpCLEAN

Dependency Debloated
Dependency tree usage analysis dependency tree

&)U

Maven dependency Bytecode analysis of Actually used
resolution API members calls dependencies

WP3 — Some Highlights

Automatic repair of vulnerabilities

* Use neural networks to generate

patches

* Collaboration with Colorado State

University

Human commits

Find commits repairing buggy to VRepa|r
fixed code
ul Repaired
source code source code
solate bu

Create context

token diff —

for target domain
tuning

Transfer weights
eqlse
‘ Update parameters with

back-propagation

Vulnerability
localization

Update parameters with
back-propagation

Automatic repair of static warnings

* Focus on industry standard lightweight
static analyzer SonarQube

* Uses metaprogramming to generate
patches

* Repoat
https://github.com/SpoonlLabs/sorald/

https://github.com/SpoonLabs/sorald/

WP4 — Some Highlights

Demonstrator:

1: Violation 2: Violation 3: Pretty-printing of (\
the Fixed AST

- Open Verificatum =

Hardened random number —

Static Analyzer l > AST Transformer
ge n e ratl o n Assumption Checker
* Verified end2end sensor-to-application = ﬁ M

data ﬂOW for SPI deViceS SonarJava Sorald \SoraIdBot j

PR Generator

Y

i

[".-LJntrusted Gues;. | .VTrusled Guestr. / \
| e Automatic repair:
Apps . .

Sofware =1 » | « Automated tool for patch suggestion in

| Linux OS ‘) SPI Driver Sw ‘ SonarQube

Prosper Hypervisor Al Aur | | Arg| e p. * Successfully applied to Verificatum

/ \ \ ~ @ Lava
Hardware Y Y - J Lamp

Layer BeagleBone Black| SPI Agev SPl [Camera o -------
Hardware Hardware

