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Secure Fullstack Computing — The Challenges

#1: Size, complexity, legacy

e All three are fundamental enemies of
security

* Separation of concerns
* Scalability where needed

* Precision where needed

#2: Lack of good models

* Current HW models are fundamentally
flawed

* Do not capture the right properties
* Do not reflect the behaviour of real HW

* Example: Spectre

#3: Proprietary HW and SW

* Incomplete and inconsistent documentation

*  Work with open source SW and HW as far
as possible

* Example:RISC-V

* Or else models must be learned

#4: Lack of effective tools and
methods

* Precision: To support critical security
properties at OS/HW level

* Scalability: For automatic analysis, processing,
and repair of large SW ensembles



The Project

WP |: Analysis and modelling
* Modelling and formal verification of low-level SW and HW
WP2: Application protection mechanisms
* Randomization and debloating, application security
WP3: Fault containment and recovery mechanisms
* Automatic repair, kernel and device security
WP4: Demonstrator
» E-voting, based on Open Verificatum
WP5: Exploitation and dissemination

* Publications, open-source releases, outreach, education
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WPI - Some Highlights
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* Formal models must reflect the behavior
of the actual hardware

* Many problems under the hood - Spectre

 SCAM-V: New testing approach to
validate models against real hardware
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WP2 — Some Highlights

Automatic randomization: Automatic code debloat

* Automatic synthesis of VWWebassembly * Remove unnecessary software
program variants dependencies

* Randomize crypto libraries on the * Static and dynamic code analysis on
world-wide edge platform of Fastly Java bytecode
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WP3 — Some Highlights

Automatic repair of vulnerabilities

* Use neural networks to generate

patches

* Collaboration with Colorado State

University
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Automatic repair of static warnings

* Focus on industry standard lightweight
static analyzer SonarQube

* Uses metaprogramming to generate
patches

* Repoat
https://github.com/SpoonlLabs/sorald/



https://github.com/SpoonLabs/sorald/

WP4 — Some Highlights
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