
TrustFull: Trustworthy Fullstack Computing

SSF-Vinnova samverkanskonferens för cybersäkerhet 2021, Dec. 2021

Mads Dam

Benoit Baudry, Roberto Guanciale, Martin Monperrus, Musard Balliu, Douglas Wikström,

Karl Palmskog

Postdocs, PhD students, MSc students

KTH/EECS/TCS

Secure Fullstack Computing –The Challenges

#1: Size, complexity, legacy

• All three are fundamental enemies of
security

• Separation of concerns

• Scalability where needed

• Precision where needed

#2: Lack of good models

• Current HW models are fundamentally
flawed

• Do not capture the right properties

• Do not reflect the behaviour of real HW

• Example: Spectre

#3: Proprietary HW and SW

• Incomplete and inconsistent documentation

• Work with open source SW and HW as far
as possible

• Example: RISC-V

• Or else models must be learned

#4: Lack of effective tools and
methods

• Precision: To support critical security
properties at OS/HW level

• Scalability: For automatic analysis, processing,
and repair of large SW ensembles

WP1: Analysis and modelling

• Modelling and formal verification of low-level SW and HW

WP2: Application protection mechanisms

• Randomization and debloating, application security

WP3: Fault containment and recovery mechanisms

• Automatic repair, kernel and device security

WP4: Demonstrator

• E-voting, based on

WP5: Exploitation and dissemination

• Publications, open-source releases, outreach, education

The Project

Thank you!

Extra Slides

WP1 - Some Highlights

SCAM-V: Testing models against

HW

• Formal models must reflect the behavior

of the actual hardware

• Many problems under the hood - Spectre

• SCAM-V: New testing approach to

validate models against real hardware

Modelling Side channels:

• Novel microinstruction-level modelling

framework MIL

• Captures all known Spectre variants and then

some

• New vulnerabilities identified

• Verified countermeasures

Automatic code debloat

• Remove unnecessary software
dependencies

• Static and dynamic code analysis on
Java bytecode

Automatic randomization:

• Automatic synthesis of Webassembly
program variants

• Randomize crypto libraries on the
world-wide edge platform of Fastly

WP2 – Some Highlights

Automatic repair of static warnings

• Focus on industry standard lightweight
static analyzer SonarQube

• Uses metaprogramming to generate
patches

• Repo at
https://github.com/SpoonLabs/sorald/

WP3 – Some Highlights

Automatic repair of vulnerabilities

• Use neural networks to generate
patches

• Collaboration with Colorado State
University

https://github.com/SpoonLabs/sorald/

WP4 – Some Highlights

Demonstrator:

•

Automatic repair:
• Automated tool for patch suggestion in

SonarQube

• Successfully applied to Verificatum

Hardened random number

generation
• Verified end2end sensor-to-application

data flow for SPI devices

